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FOREWORD

This is a progress report on the research project, "Analysis and Computation of

Internal Flow Field in a Scramjet Engine," for the period ended January 14, 1991. Special

attention during this period was directed to investigate "Radiative Interactions in Chemically

Reacting Supersonic Internal Flows." The work was supported by the NASA Langley

Research Center (Theoretical Flow Physics Branch of the Fluid Mechanics Division)

through the grant NAG-I-423. The grant was monitored by Drs. J.P. Drummond and A.

Kumar of FLDMD-Theoretical Flow Physics Branch.
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RADIATIVE INTERACTIONS IN CHEMICALLY REACTING SUPERSONIC

INTERNAL FLOWS

S. N. "13wari and R. Chandrasekhar

Department of Mechanical Engineering and Mechanics

Old Dominion University, Norfolk, VA 23529-0247

ABSTRACT

The two-dimensional, elliptic Navier-Stokes equations are used to investigate supersonic

flows with finite-rate chemistry and radiation, for hydrogen-air systems. The chemistry source

term in the species equation is treated implicitly to alleviate the stiffness associated with fast

reactions. The explicit, unsplit MacCormack finite-difference scheme is used to advance the

governing equations in time, until convergence is achieved. The specific problem considered is

the premixed flow in a channel with a ten-degree compression ramp. Three different chemistry

models are used, accounting for increasing number of reactions and participating species. Two

chemistry models assume nitrogen as inert, while the third model accounts for nitrogen reactions

and NOx formation. The tangent slab approximation is used in the radiative flux formulation. A

pseudo-gray model is used to represent the absorption-emission characteristics of the participating

species. Results obtained for specific conditions indicate that the radiative interactions vary

substantially, depending on reactions involving HO2 and NO species, and that this can have

a significant influence on the flowfield.
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NOMENCLATURE

band absorptance , m - t

band width parameter, m -1

concentration of the jth species, kg - mole/m 3

constant pressure specific heat, J/kg - K

correlation parameter, ( N/m2)-lm -1

total internal energy

Planck' s function

mass fraction of jth species

total enthalFg, J/kg

static enthaltnj, J/kg

thermal conductivity

backward rate constant

forward rate constant

pressure, N/m z

partial pressure of jth species

total radiative flux

gas constant

integrated band intensity, (N/m 2) -lm-2

temperature. K

velocity in x - and y - directions, m/s

production rate of jth species, kg/m 3 -- s

physical coordinates

ratio of specific heats

Planck mean absorption coefficient

second coefficient of viscosity, wavelength
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IJ dynamic viscosity, kg/m - s

_,11 computational coordinates

p density

a 8tefan - Boltzmann constant

r shear stress

equivalence ratio

w wave number, m -1
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INTRODUCTION

In recent years there has been a renewed interest in the development of a hypersonic

transatmospheric aerospace vehicle capable of flying at sub-orbital speeds. A hydrogen-fueled

supersonic combustion ramjet (scrarnjet) engine is a strong candidate for propelling such a

vehicle. For a better understanding of the complex flowfield in different regions of the engine,

both experimental and computational techniques am employed. Several computer programs have

been developed [1---4] and applied to gain more insight into the problem involving the flow in

the various sections of the scramjet module.

The combustion of hydrogen and air in the scramjet combustor results in absorbing-emitting

gases such as water vapor and hydroxyl radicals. Existence of such gases makes the study of

radiation heat transfer an important issue. Them are several models available in the literature

to represent the absorption-emission characteristics of molecular gases [5-10]. One- and two-

dimensional radiative heat transfer equations for various flow and combustion related problems

are available [11-19]. In earlier studies [16,18,19], both pseudo-gray and nongray gas models

were employed to evaluate radiative heat transfer for chemically reacting supersonic flow. Results

of both models were compared and the pseudo-gray model was found to be computationaUy

more efficient.

Considerable work has been carried out in the past decade to model the chemical kinetic

mechanism of the hydrogen-air system. A most complete model would involve some 60

reaction paths [20], rendering numerical solution very difficult, if not impossible. A two-

step chemistry model, has been used for computing supersonic combustion [4, 16, 18, 19].

This model has only four species and two reaction paths, and is useful for preliminary studies.

However, there are several limitations to this model, such as ignition-phase inaccuracy (i.e. a

much shorter ignition delay) and also, overprediction of flame temperature and longer reaction

times. Recent improvements in this area include a 8-species, 14-reaction model [21] and a

9-species, 18-reaction model [2, 22]. While none of these aforementioned models account





for nitrogen reactions (assuming nitrogen as inert), recent developments in this area include a

15--species, 35-reaction model which accounts for NOx formation and other nitrogen reactions

in the hydrogen-air system [22].

The objectives of the present study are to extend the radiative heat transfer formulation

used with the global two-step chemistry model [18, 19], to the more complete models namely

the 9-species, 18--reaction model as well as the 15-species, 35-reaction model. The effect of

radiative heat transfer in both transverse and streamwise directions is investigated. The finite-

difference method using the explicit, unsplit MacCormack scheme [23] is used to solve the

governing equations.

The flowfield in the combustor is represented by the Navier-Stokes equations and by the

appropriate species continuity equations [2, 3]. Incorporation of the finite-rate chemistry models

into the fluid dynamic equations can create a set of stiff differential equations. Stiffness is due to

a disparity in the time scales of the governing equations. In the time accurate solution, after the

fast transients have decayed and the solutions are changing slowly, taking a larger time step is

more efficient. But explicit methods still require small time steps to maintain stability. One way

around this problem is to use a fully implicit method. However, this requires the inversion of

a block multi-diagonal system of algebraic equations, which is also computationally expensive.

The use of a semi-implicit technique, suggested by several investigators [24-26], provides an

alternative to the above problems. This method treats the source term (which is the cause of the

stiffness) implicitly, and solves the remaining terms explicitly.

BASIC GOVERNING EQUATIONS

The physical model for analyzing the flowfield in a supersonic combustor is described by

the Navier-Stokes and species continuity equations. For two-dimensional flows, these equations

are expressed in physical coordinates as,

OU OF OG

0--/-+ _-_-z +-by + H = 0 (1)
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wherevectorsU, F, G and H are written as,

P

pu

U = pv

pE

pf_
pu

pu 2 + p + rzz

puv + z_y

(pE + p)u + _'==u + r'zyv + qc= + qR=

F

G .__

pl}

puv + ry=

pv 2 + p + rvy

(pE + p)v + rzyv + ryvv + qcv + qRy

pv f j - ,oD °_fy

0

0

It = 0

0

-w i

The viscous stress tensors in the F and G terms are given as,

_== = -x _ + - 2_,_ (2a)

r=v = -/z _zz + (2b)

Tyy = -_ _+ - 2_ (2c)

where A = -_/z The quantities qex and qey in the F and G terms are the components of

the conduction heat flux and are expressed as

_k_____
qc= = Oz

k OT
qcy = - -_y

(3)

3





The molecular viscosity /_ is evaluated from the Sutherland's formula. The total internal

energy E in Eq. (2) is given by

u 2 -t- v 2 m

p 2
j=l

Specific relations are needed for the chemistry and radiative flux terms.

in the following sections.

These are discussed

CHEMISTRY AND THERMODYNAMIC MODELS

Chemical reaction rate expressions are usually determined by summing the contributions

from each relevant reaction path to obtain the total rate of change of each species. Each path

is governed by a law of mass action expression in which the rate constants can be determined

from a temperature dependent An'henius expression. The reaction mechanism is expressed in

a general form as

j=l j=l

, i = 1,he (5)

where ns = number of speciesand nr = number of reactions.The chemistry source terms wj in

Eq. (1) are obtained, on a mass basis, by multiplying the molar changes and corresponding

molecular weight as

wi = MjCj = Mj 7 i- k:,
i----1 m----1

- kb, C_" , j = 1,ns

rn_ l

(6)

The reaction rate constants kfi

an Arrhenius rate expression as

and kbi appearing in Eqs. (5) and (6) are determined from
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where ,

kf, = AiT_V'ezp(--_ -)

k f,
kb, -

keqi

(7)

(8)

( 1 ,_n {--AGR, (9)

The coefficients A, N and E appearing in Eq. (7) are given in Table 1. The term

Eq. (9) denotes the difference in the number of moles of reactants and products.

The Gibbs energy term in Eq. (9) is calculated as

115 g_$

Z" ZAGR, = 7ijgi -- 7ijgi , j = 1, nr

1----1 2----1

An in

(I0)

-_gJ = Aj(T - lnT) + -_T" + -._--TBJ_., Cj-3

D j E.._.jT s
+'_2 T4 + 20 + F i + GjT

(11)

as

The gas constant for the mixture is evaluated by a mass-weighted summation over all species

-R = ZfJR, (12)

/=1

P = p-RT (13)

RADIATION TRANSFER MODEL

Evaluation of the energy equation presented in Eq. (1) requires an appropriate expression

for the radiative flux term, qR. Therefore, a suitable radiative transport model is needed.
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Various models are available in the literature to represent the absorption-emission characteristics

of the molecular species [10]. The equations of radiative transport am expressed generally in

integro-diffemntial forms. The integration involves both the frequency specmun and physical

coordinates. In many realistic three-dimensional physical problems, the complexity of the

radiative transport equations can be reduced by introduction of the tangent-slab approximation.

This approximation treats the gas layer as a one-dimensional slab in evaluation of the radiative

flux (Fig. 1).

Detailed derivations of radiative flux equations for gray as well as nongray radiation have

been carried out previously [15, 19]. For a multiband gaseous system, the nongray radiative

flux in the normal direction is expressed as

qR(_/) = et - e2 +

y

i=l 0

["3/._oi z,]+++
I,

-0,, _ y)]d:)

(14)

The information on the band absorptance ._i and other quantities is available in the cited

references.

For a gray medium, the spectral absorption coefficient t¢_ is independent of the wave

number, and an expression for the radiative flux is obtained as [5, 16, 19]

g

0 (15)
L

- /[e(:)-
g

Itiscomputationallymore efficienttouse Eq. (15) inthe generalenergy equation than Eq. (14).

This is because by differentiatingEq. (15) twice (usingthe Leibnitzformula) the integralsare

eliminated and the following inbomogenous ordinary differentialequation isobtained :
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1 d2q, (v) 9 3d,(v)
_ql:t(Y) - - (16)_;2 dy2 t¢ dy

The solution of Eq.

diffuse surfaces as [5]

(16) requires two boundary conditions which arc given for non-black

(1 _) 1 [dqR] =0 (17a)[qR(Y)]y=o -- "_L dy J y=o

1 1) 1 [dqR] =0 (17b)[2 2 [qR(v)I,=L + "_ ['-_-y j i,=r.

For black surfaces et = e2 = 1 and Eqs. (17) r_luce to simpler forms.

An appropriate model for a gray gas absorption coefficient is rexluit_ in Eqs. (15) --

(17). This is representedby the Planck mean absorptioncoefficient,which isexprcssexlfor a

multi-band system as [5, 19]

e_,(T)S,(T)
_; = tee = o.T4(y ) i=I

(18)

It should be noted that _;p is a function of the temperature and the partial pressures Pj of

the species.

METHOD OF SOLUTION

The governing equationsarc transformedfrom the physicaldomain (x, y) toa computational

domain (_ , q), using an algebraicgridgeneration technique similarto the one used by Smith

and Weigel [27]. In the computational domain, Eq. (1) isexpressed as

where

o? o6
O-"t-+ _- + _ + _' = 0 (19)

= U J, P = Fv.-Gz.

= Gx_-Fy(, H = HJ (20)

J = x_y, t -y_x, t
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Oncethetemporaldiscredzationhas been performed, the resulting system is spatially differenced

using the explicit, unsplit MacCormack predictor-correcter scheme [23]. This results in a

spatially and temporally discrete, simultaneous system of equations at each grid point [25, 26].

Each simultaneous system is solved, subject to initial and boundary conditions, by using the

Householder technique [28, 29]. At the supersonic inflow boundary, all flow quantities are

specified as freestream conditions. At the supersonic outflow boundary, non-reflective boundary

conditions are used, i.e. all flow quantities are extrapolated from interior grid points. The upper

and lower boundaries are treated as solid wails. This implies a non-slip boundary condition (i.e.

zero velocities). The wall temperature and pressure are extrapolated from interior grid points.

Initial conditions are obtained by specifying freestream conditions throughout the flowfield- The

resulting set of equations is marched in time, until convergence is achieved. The details of the

radiative flux formulation and method of solution are available in [19].

RESULTS AND DISCUSSION

Based on the theory and computational procedures described previously, an algorithm has

been developed to solve the two-dimensional Navier-Stokes equations for chemically reacting and

radiating supersonic flows. The extent of radiative heat transfer in supersonic flows undergoing

hydrogen-air chemical reactions, has been investigated using three chemical kinetics models,

accounting for increasing number of reactions and participating species. For the temperature

range considered in tl_s study, the important radiating species are OH, NO and H20. The gray

gas formulations are based on the Planck mean absorption coefficient which accounts for the

detailed information on different molecular bands. The radiative fluxes have been computed

using this 'pseudo-gray' formulation. The justification for using this model is provided in [19].

Important results for radiative effects of participating species and of chemical interactions were

presented at the 29 th Aerospace Sciences Meeting in Reno, Nevada, January 7-10, 1991 (AIAA

Papers 91-0373 and 91-0572). These are provided in this report as Appendices A and B.
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The specific problem considered is the supersonic flow of premixed hydrogen and air

(stoickiometric equivalence ratio $ = 1.0 ) in a channel with a compression comer on the

lower boundary (Fig. 2). The physical dimensions considered for obtaining results are L = 2

cm., Xt = Icm., X2 = 2cm., Lx = Xt + X2 = 3 cm. , and a = I0 degrees. The flow is ignited

by the shock from the compression corner. The inlet conditions which are representative of

scramjet operating conditions, are Poo = 1.0 arm., Too = 900 K and Moo = 4.0. This same

flow has been computed by several CFD research groups [4, 18, 19, 21] as a benchmark case.

Figures 3-7 show the computed results using a 31 x 31 grid, for temperature anti pressure

as weLl as H20 and OH species mass fractions. Figure 3 shows the ftowfield contours for

temperature and pressure for the non-reacting (cold) case.The oblique shock is seen to arise

from the compression comer at the lower wall. The hottest regions in the flowfield arc in

the upper and lower boundary layers.Figures 4 and 5 show the effectof the three chemistry

models on the temperature and pressure profiles,varying along x at the location y = 0.02

cm from the lower wall (boundary layerregion).The temperaturesin the boundary layershow

a gradual increase(Fig.4). The pressureprofilesarc plottedat y = 0.13 cm. (inviscidregion)

and show a sharp increasedue to the shock (Fig. 5). The ignition-phaseinaccuraciesof the

three chemistry models can be seen in Figs. 6 and 7. The shock isoccurring after x / Lx =

0.3. However, the 2-step model predictsignitionbeforethe shock (shorterignitiondelay)due

to the high temperature in the boundary layer.On the other hand, the 18---stepmodel predictsa

longerignitiondelay,atx /Lx = 0.37 (Fig.6).The 35-step modcrs predictionof ignitiondelay

appears to be an average of the othertwo models. Although the threemodels do not differmuch

in predictionof temperature and pressure profiles,they do differsignificantlyin predictionsof

species productions (Figs. 6, 7).

In order to resolve thisdiscrepancy, a grid sensitivitystudy was carriedout to examine

whether the grid size affects the flow predictions. The results of three grid distributions 11 x

31 , 31 x 31 and 61 x 31 are shown in Fig. 8, and it appears that the 31 x 31 grid is

9





sufficient for the presentstudy.

Thereasonfor thevarying predictionsof speciesproductionby thethreemodelswasfurther

examined and the results ate shown in Figs. 9 and 10. Figure 9 shows that the Reaction No. 8

in Table 1 is critical in determining the extent of chemical heat release and 1-120 production.

Reaction No. 8 deals with production of HOz radical. This reaction is absent from the 2-step

model, while it is common to both the 18--step and 35-step models. Figure 9 shows that the

35-step model experiences nearly a 30% drop in temperature at the channel exit, when the rate of

Reaction No. 8 is reduced by a factor of 1000 (effectively cutting off the production 6f the HO2

radical). In contrast, the 18--step model shows a 15% drop in temperature, when subjected to the

same reduction in rate of Reaction No. 8. This shows that the Reaction No. 8 controls the overall

H20 production occurring in Reaction Nos. 9-18 (Table 1). Due to the high temperatures (

" 3000 K) in the flowfield, there is a pool of highly reactive free radicals like H, O, etc. The

HO2 radical is convened to the very reactive OH radical, by the free radicals (Reaction Nos.

11 and 12). This establishes the HO2 radical as a very important species in promoting flame

propagation in hydrogen-air flames. A similar study has been carried out in [30]. Since the

2-step model does not have the HO2 radical, it predicts lesser amounts of OH and H20.

It was necessary to determine the reason for the higher sensitivity of the 35-step model to the

HO2 radical, as compared to the 18--step model. Figure 10 shows that the Reaction Nos. 21 and

23 in Table 1 are critical in determining the extent of chemical heat release and I420 production.

Reaction Nos. 21 and 23 deal with production of the NO radical. These reactions are absent

from the 2-step and 18--step models, whereas they play an important role in the 35-step model.

Figure 10 shows that the 35-step model undergoes a 30% reduction in temperature, when the

rates of Reaction Nos. 21 and 23 are reduced by a factor of 1000 (effectively cutting off the

production of the NO radical). This is nearly the same reduction caused by reducing the rate of

Reaction No. 8 by'a factor of 1000. Due to the high temperatures in the flowfield, the usually

inert nitrogen dissociates into the highly reactive N free radical. This free radical N is then

10





oxidized in ReactionNos. 21 and 23, thereby producing the NO radical. This NO radical

converts the HO2 radical into the highly reactive OH radical, through Reaction No. 29. This

confirms that the NO radical is a very important species for flame propagation in a hydrogen-

fueled supersonic combustor. Since the 35-step model has the NO radical, it predicts higher

amounts of OH and H20 than the 18-step model.

Figures 11-13 describeflowfieldcontours affectedby exothermic chemical reactions.Com-

parison of Figs. 3a and 11 shows thatthe boundary layer on the lower wall is considerably

thickened due to the heat releasefrom chemical reaction. Figures 3b and 12 show that the

chemical reactionin the boundary layer causes the shock to get curved upwards, thereby in-

creasingthe shock strength.In the case of the 35-step model (Fig. 12b),two weak shocks arise

from the channel cnu'anceregion. These could be responsiblefor some of the flow instabilities

observed in the figures.Figure 13 shows the computed H20 flame structurefor the 2-step and

35--stepmodels. The 35---stepflame(Fig. 13b) appears to be strongerand undergoes a quenching

effect (discontinuity in the flame sheet) which is not observed in the 2-step flame.

Based on the above understanding of the chemical kinetics of supersonic hydrogen-air

flames, the radiative interactions were examined. Figure 14 shows the profiles of the normalized

stream,vise radiative flux qRx predicted by the three chemistry models, along the location y

= 0.02 cm. from the lower wall. The qRx flux reduces towards the end of the channel due

to cancellation of fluxes in positive and negative directions. It is seen from Fig. 14 that the

18-step and 35-step models predict significantly higher amounts (50% more and 100% more,

respectively) of qRx than the 2-step model. This is because radiative heat tranfer is a strong

function of temperature, pressure and species concentrations. So the larger values of radiative

fluxes are caused by higher amounts of H20 concentrations, which in turn, depend on reactions

involving HO2 and NO species. Figure 15 shows the variations of the normal radiative flux

qRy along x, at the location y = 0.02 cm. These do not appear to vary significantly between

the three chemistry models. However, in all three cases, the qRy value increases rapidly after
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the shock.

Figures 16--19 show the computed results for reacting flows with and without radiation, for

the three chemistry models. It is seen from that the 2-step model shows only slight effect of

radiative interaction, as compared to the 18-step and 35-step models. The 18-step and 35-step

models predict lower temperature and lower H20 and OH concentrations after the shock.

This is because of the qRx flux, which reduces the total energy. For reacting flows without

radiation, it was seen from Figs. 6 and 7 that the 18--step model had a longer ignition delay

(ignition at x / Lx = 0.37), while the 35-step model had a shorter ignition delay ('ignition at

x / Lx = 0.27). Another effect of radiative interactions, seen in Fig. 18, is to nullify this

difference in predictions of ignition delay. For both 1g-step and 35-step models, with radiation,

the ignition is seen to occur at the same point, x / Lx = 0.33. No such effect is seen on the

ignition characteristics of the 2-step model.

Comparison of results in Figs. 16-19 shows that the 35-step model exhibits stronger effect

of radiative interactions, than the other two models. Accordingly, Figs. 20-22 show flowfield

contours affected by the 35--step chemistry model, as well as by radiation. It can be seen

from Figs. 1 lb and 20 that the effect of radiation is to lower the temperature after the shock

(cooling effect). Figures 12b and 21 show another effect of radiation m elimination of the two

weak shocks arising from the channel entrance. This is understood from Fig. 14, where the

qRx radiative flux is higher in the upstream region of the flow. Figures 13b and 22 show that

the radiative interactions enable the development of a continuous flame sheet, wherein the flame

quenching effect observed in Fig. 13b is nullified.

CONCLUSIONS

The two-dimensional, spatially elliptic Navier-Stokes equations have been used to obtain

solutions for supersonic flows undergoing finite-rate chemical reactions along with radiative

interactions. The specific problem considered is of the premixed flow in a channel with a ten-
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degree comFression ramp. The inlet conditions used in the present study correspond to typical

flow conditions of a scramjet engine. Three different chemistry models were used for parametric

studies, accounting for increasing number of reactions and participating species. It is seen that the

radiative interactions vary significandy, depending particularly on chemical reactions involving

HO2 and NO species. These reactions have a substantial effect on the flowfield, with regard

to H20 concentration, temperature and pressure. Also, it is observed that the difference in

the ignition delays of two chemistry models invoving HO2 reactions is nullified as a result

of radiative interaction. The results also show that the streamwise radiative flux reduces the

temperature and concentration of species. This effect is a strong function of the amount of H20

species concentration.
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Table 1. Hydrogen-Air Combustion Mechanism [22]

(I) O_ + Hz _ OH + OH 1.70 x 10 .'j 0 48130

(2) ()1 • H *..0 OH t. O 1.42 x I1'1I' 0 16400

(3) HI • OH ,-, Hi() ÷ H 3.16 x HI T I.g 3030

(4) Hz 4. O ,4 OH _, H 2.07 x I0 I. 0 13730

(3) OH 4- OH *..* HzO ÷ O 3.30 x 10 .3 0 7fJO0

(6) H ÷ OH 4-M ,-_ X20 _ M 2.21 x 10 _2 --2.0 0

('/) H • H • M ,.,* H2 l- M 6.33 x IO.7 --I.0 0

(1_) H • ()| I. M N H(}L1 41.M 3.20 t I11II --I.0 0

(9) ()H • HO l ,-¢ (}l • HI() 3.(XI x 10 I! 0 I(W)(1

(IO) H 4. H(_ *,,* HI ÷ 02 2.53 x 10 I_ 0 70(1

(I I) H + HO] ,.-, OH 4. OH 1.99 x I0'* 0 IA00

(12) O ÷ HOz N Ol ÷ OH 3.00 x 10 I) 0 10(}0

(13) H(_tHOz *40z _. HzOz 1.99 x I0 °l 0 0

(14) H I , HOI ,.4 H ÷ II10 ! 3.01 x I0 tl 0 IR'/00

(15) OH • HzOI *4 HI() • H()l 1.02 x I0 I! 0 190()

(16) H • Hz()I ¢-¢ HzO ÷ OH 3.0(I I 10 II 0 100(}0

(17) O ÷ H201 *'* OH 4. H()I 1.99 x I0 i_ 0 3900

(IR) 11201 4.M_OH •OH ÷M 1.21 x I0 i7 0 43300

** Rmnintnll reacllons complele the 33-step mcNlel **

(19) ()1 • M _ O • (3 4- M 2.73 x I() Is --!.0 IIA7(}O

(20) N2 ÷ M*., N ÷ N ÷ M 3.70x I021 --i.6 2230()0

(21) N 4- Ol ,-, O ÷ NO 6.40 x II) l 1.0 630(I

(22) N • NO_-,O •N1 1.60 1, 10 '! 0 0

(23) N •OH,-, H4-NO 6.30x I0" 03 0

(24) H4-NO÷ M_HNO+M 5.40x 10 's 0 ---600

(25) H ÷ HNO*.4, H2 ÷ NO 4.80x I012 0 0

(26) O • HNO_OH •NO 5.13Ox 10 It 0.5 O

(27) ()H-• HNO_ HIO • NO 3.60x I0 I! 0 (1

(2R) H()2 • HNO .-o H202 + NO 2.(Y) x 10 .2 0 0

(29) X()z • NO _-_ OH ÷ N()_ 3.43 x 10 .2 0 --260

(30) H + NO 2 _ (}I'I • NO 3.3(I X 1014 0 1300

(31) 0 • NC) 2 ,-, ()2 • NO I.(10 x I0'3 0 61}I}

(32) NO1 ÷ M _._ O • NO ÷ M !.16 x !0 "i O 66m0

(33) M •OH • NOi-oHNO2 ÷ M 3.60 x I0 I_ 0 --1700

(34) M ÷OH ÷ NC_ _-_ HNO_ • M 3.0Ox I0 i_ O _3ROO

(33) OI! ÷ HNO1 ,-o H20 4- NOI 1.60 x I(112 0 0

** following reactions consdlule the global 2-step model [4, 16. 18. 191 **
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RADIATIVE INTERACTIONS IN A HYDROGEN-FUELED SUPERSONIC COMBUSTOR

R. Chandrasekhar* and S. N. Tiwari t

Old Dominion University, Norfolk, VA 23529-0247
and

J. P. Drummond*

NASA-Langley Research Center, Hampton, VA 23665

Abstract

The two-dimension'd, elliptic Navier-Stokcs equa-

tions are used to investigate supersonic flows with

finite-rate chemistry and radiation, for hydrogen-air

systems. The chemistry source term in the species
cquatkm is treated implicitly to alleviate the stiffness

associated with fast reactions. The explicit, unsplit
MacCormack finite-difference scheme is used to ad-

vance the governing equations in time, until conver-
gence is achieved. The specific problem considered is

the premixed llow in a channel with a ten-degree com-

pression ramp. Three different chemistry models are

usc(l, accounting for increasing number of reactions
alitl t)artici|)ating sprites. Two CbenliSIl"y models as-

sume nitrogen as inert, while the third model accounls

for nitrogen reacUons and NO, formation. The tan-

gent slab approximation is used in the radiative flux

formulation. A pseudo-gray model is used to repre-

sent the absorption-emission characteristics of the par-

ticipating species. Results obtained for specific condi-

tions indicate that the radiative interactions vary sub-
stantially, depending on reactions involving HO2 and

NO species, and that this can have a significant influ-
ence on the flowfield.

Nomenc 'lature

A band absorptance, m-l

..l_ band width parameter, m -l

(.'j co,centration o] the j;n species, kg- mole/m a

('l. r,,nnt,4nt pressure specific heat, J/k,.I - K

C,, correlation parameter, ( N/m")-tm-!

l'J total internal eneryy

c,., Planck' s function

fj mass fraction of jtn species

I! total cnthalpy, J/k,j
I, static enthalpy, J/kg

k th, rm,i comluctit, i111
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Copyright © 1990 by the American Institute of Aero-
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kb backward rate constant

k I forward ;'ate co, sta,t
P pressure, N/m 2

Pj partial pressure of jth species
qn total radiative flux

R yas constant

S integratedb.ndintensity, (N/m_-)-tm -''

'1' temperature, K
u, v velocit11 in x - and y- directions, rots

tbi production rate of j_h species, ky/In 3 - S

Z, 11 phllsical coordinates

7 ratio of specific heats

Kt, I)i, nck reran ab.w,ri,li,,n roof riot, nl
A zecond coefficient of viscosity , w,r, h ,,lib

# d11narnic viscosity, ky/m - s

_, ;I computational coordimdes

p density

<r Sic fan - Boltzma;m constant
r shear stress

equivalence r{dio

t# wave nu;ltber, IH -I

lntrl_uction

in recent years there has been a renewed

interest in the development of a hypersonic transat-
mospheric aerospace vehicle capable of flying at sub-

orbital speeds. A hydrogen-fueled supersonic combus-

tion ramjet (scram jet) engine is a strong candidate for

I)ropelling such a vehicle. For a better understanding

of the c{_nplex Ik)wliekl in dilfemm regions of the en-
gine, Ix_h experimental and computational techniques

are employed. Several completer programs have been

developed !1--41 and applied to gain more insight into

the problem involving the Ilow in the various sections
of the scram jet module.

'llle combustion of hydrogen a,itl air in Ihe scr;lln-

jet combustor results in absorbing-emitting gases such

as water valx3r and hydroxyl radicals. Existence of

such gases makes tim sludy of radiation heat transfer an

imlxxtant issue. There are several models available in
the literature to represent tic absoqXk)n-emission char-

acteristics of molecular gases 15-101. One- and two-

dimensional radiative heat transfer equations for vari-

ous Ilow and combustion related problems are available
I I I- 191. In earlier studies [ 16,18,191, bath pscuck;-gray

and n(mgray gas mndels were employed to evaluate ra-

diative beat transl_er I'_r chemically reacting SUl_:rsonic

OF P'3,,._ OuAl_rrY



flow. Re,suits of both models were compared and the

pseudo-gray model was found to be computationally
more efficient.

Considerable work has been carried out in the past
decade tomodel thechemicalkineticmechanism ofthe

hydrogen-airsystem. A most complete model would

involve some 60 reaction paths [20], rendering numeri-
cal solution very difficult, if not impossible. A two-step

chemistry model, has been used for computing super-

sonic combustion [4, 16, 18, 19]. This model has only
fi)ur species and two reaction paths, and is useful for

prcli,ninary studies. However, there are several limita-

tions to this model, such as ignition-phase inaccuracy

(i.e. a much shorter ignition delay) and also, oveiprc-
diction of flame temperature and longer reaction times,

Recent imprnvements in this area include a g-species,
14-reaction model [21] and a 9-species, 18-reaction
model [2, 22]. While none of these aforementioned

models account for nitrogen reactions (assuming ni-

trogen as inert), recent developments in this atca in-
clude a 15-species, 35--reaction model which accounts
for NOt fia'mation and other nitrogen reactions in the

hydrogen-air system [22].

The objectivesof the present study arc to extend
the r',Kliativc heat transfer for'mutation used with Ihe

global two-step chemislxy model [18, 19], to the more

complete models namely the 9-species, 18-reaction
model as well as the 15-species, 35-reaction model.
The effect of radiative heat transfer in both transverse

and streamwise directions is investigated. The finite-
difference method using the explicit, unsplit MacCor-

mack scheme [23] is used to solve the governing equa-
tions.

The flowfield in the combustor is represented by

the Navier-Stokcs equations and by the appropriate
species continuity equations [2, 3]. lncoqxxalion of

the finite-rate chemistry models into the Iluid dynamic

equations can create a set of stiff diflerentiai equations.
Stiil'ncss is due to a disparity in the time scales of the
governing equations. In the time accurate solution, af-

ter the last transients have decayed and the solutions
are changing slowly, taking a larger time step is more

efficient. But explicit methods still require small time

steps to maintain stability. One way around this prob-

lem is to use a fully implicit method. However, this
requires the inversion of a block multi-diagonal system

of algebraic equations, which is also computationally

expensive. The use of a semi-implicit technique, sug-

gested by several investigau_rs [24-26], provides an
alternative to the above problems. This method treats

the source term (which is the cause of the stiffness)

implicitly, and solves the remaining temis explicitly.

Basic Governing Equations

The physical model for analyzing the Ilowfield in
a supersonic combustor is described by tile Navier-

Stokes and species continuity equations. For two-
dimensional flows, these equations are expressed in

physical coordinates as,

OU OF OG

o--( + _ + _ + II = o (i)

where vectors U, F, G and H are written as,

I! = I pv

[oeeli
pu

pu" + I' + Tt=

pUV + rzv
(pE + p)u + rxxu + rzvv + qet + qn_

p,, fj - pDOoJ_

p.v + r_
pv" + !' + rvv

(pE + p)t, + T.yt, + r_ _ + q_ + q.y

pv& - pD! 'v

=Ii
L -- wi

The viscous stress tensors in the F and G terms are

given as,

,
r.. = \ 0t + 0y] - 2#_ (2a)

Tyt/

I' _)" Or)

:_(Ou Ov_ Or,

where A = -3_i , . The quantifies qc. and q_y in the
F and G terms are the components of the conduction
heat Ilux and arc expressed as

qct = Ox

_L.*T
q_v = (99

(3)

"l])e molecular viscosity i_ is evaluated Ir(.n the

Sutherland's formula. The total internal energy E in
Eq. (2) is given by

P U" + t_2 m

I_' = --- + _ + E l"f.I (4)
p 2

j=l



Specific relations are needed for the chemistry and ra-

diative flux terms. These are discussed in the following
sections.

Chemistry and Thermodynamic Model

Chemical reaction rate expressions are usually de-
termined by summing the contributions from each rel-

evant reaction path to obtain the total rate of change
of each species. Each path is governed by a law of
mass action expression in which the rate constants can

be determined from a temperature dependent Arrhenius

expression. The reaction mechanism is expressed in a
general form as

rig n8
, k/, I--'_ __-

2_,_,,c_= 2.,_,,c'j , i= l,.,. (s)
j=l kb, j=l

where ns = number of species and nr = number of

reactions. The chemistry source terms _j in Eq. (1)
are obtained, on a mass basis, by multiplying the molar

changes and corresponding molecular weight as

,;,j = MiC, = ,%_ -_,_- "Y,i kl, c2;"
i=1 m=l

(-,3',,,,
_eN i J

it* = I

1_ rIB

(6)

The reaction rate constants kri and kbt appearing
in Eqs. (5) and (6) are determined from an Arrhenius

rate expression as

wl)cre ,

(7)

k_. - ty, (8)
key,

= ) exp\ RT ) (9)

The coefficients A , N and E appearing in Eq. (7)
are given in Table 1. The term An in F.q. (9) denotes
the difference in the number of moles of reactants and

products.

The Gibbs energy term in Eq. (9) is calculated as

A¢,'., = %.1:1, - ")_jYi, j - l,.r (10)
j=l j:l

9"J-JR= Aj('F - InT) + -_7 + --_-2

D_. E.
(11)

The gas constant for the mixture is evaluated by
a mass-weighted summation over all six:ties as

= _..,/,_ nj (12)
,/=t

P = pRT (13)

Radiation Transfer Model

Evaluation of the energy equation presented in Eq.
(1) requires an appropriate expression for the radiative

flux term, qa • Therefore, a suitable radialive transport
model is needed. Various models are available in the

literature to represent the absorption-emission charac-

teristics of the molecular species [ 10]. The equations of

radiative transport are expressed generally in imegro-

differential forms. The integration involves both the

frequency spectrum and physical coordinates. In many
realistic three-dimensi(mal physical problems, the com-

plexity of the radiative transport equations can be re-

duced by introduction of the tangent-slab approxima-
tion. This approximation treats the gas layer as a one-

dimensional slab in evaluation of the radiative flux (Fig.
1).

Detailed derivations of radiative flux equations for
gray as well as nongray radiation have been carried out

previously [15, 19]. For a multiband gaseous system,
the nongray radiative flux in the normal direction is

expressed as

y

i=1 0

f3 Uo,

L

[3.o_, _ y)],l:}
J

The information on the band absorptance At and other
quantities is available in the cited references.

For a gray medium, the spectral absorption coef-

ficient g_ is independent of the wave number, and

an expression for the radiaUve flux is obtained as [5,
16, 191

v.(v)
¥

= _l -,':_ + _1 ,(:)-,_,J,---"- ,,',/:
o

L

- / [_(:)- _]_- _:_,_: }
v

(15)

, .... " _, '4_ "_: _ _ _'



It is compulationally more efficient to use Eq. (15)
in the general energy equation than Eq. (14). This is

because by differentiating Eq. (15) twice (using the

Leibnitz formula) lee integrals are eliminated and the

following inbomogenous ordinary differential equation
is obtained :

1 d_qR(9) 9 3 de(y)
_qn(P) - - (16)_2 dy_ _ dy

The solution of Eq. (16) requires two boundary con-
ditions which are given for non-black diffuse surfaces
as [5l

(' ' r,,,,.1:o- [qn(Y)]'=° - _ [ dy J _=o

- [qn(Y)l,--L+ dv

For black surfaces ¢i = c2 = 1 and Eqs. (17) reduce
to simpler forms.

An appropriate model for a gray gas absorption
coefficient is required in Eqs. (15) -- (17). This is

represented by the Planck mean absorption coefficient,
which is expressed for a multi-hand system as [5, 19]

p_ n

i=1

(18)

it should be noted that Kp is a function of the tem-

perature and the partial pressures Pj of the species.

Method of Solution

The governing equations are transformed from the

physical domain (x, y) to a computational domain (_,
q), using an algebraic grid generation techniq,.ie similar
to the one used by Smith and Weigel [271. In the

computational domain, Eq. (1) is expressed as

oO o? o8
o--F+ 3-( + + = o (19)

where

0 = U J, if' = Fyq-Gxq

= Gz -F'y , = n J

J = x{yq - y(xq

(20)

Once the temporal discretization has been performed,

the resulting system is spatially differenced using

the explicit, unsplit MacCormack Predictor-corrector

scheme 123]. This results in a spatially and temporally
discrete, simultaneous system of equations at each grid

point 125, 261. Each simultaneous system is solved,

subject to initial and boundary conditions, by using

the Householder technique [28, 291. At the super-

sonic inflow boundary, all flow quantities are speci-
fied as freestream conditions. At the supersonic out-

flow boun 'dary, non-reflective boun"daryconditions are
used, i.e. all flow quantities are extrapolated from in-

terior grid points. The upper and lower boundaries are

treated as solid walls. This implies a non-slip boundary

condition (i.e. zero velocities). The wall temperature

and pressure are extrapolated from interior grid points.

Initial conditions are obtained by specifying freestream

conditions throughout the flowfieid. The resulting set
of equations is marched in time, until convergence is
achieved. The details of the radiative flux formulation

and method of solution are available in [191.

Results and Di_ussion

Bascd on the theory and computational procedures
described previously, an algorithm has been developed

to solve the two-dimensional Navier-Stokes equations

for chemically reacting and radiating supersonic flows.

The extent of radiative hem transfer in supersonic flows
undergoing hydrogen-air chemical reactions, has been
investigated using three chemical kinetics models, ac-

counting for increasing number of reactions and par-
ticipating species. For the temperature range consid-

ered in this study, the important nidiating species a?e
O11 and HIO. The gray gas formulations arc based

on the Planck mean absorption coefficient which ac-
counts for the detailed information on different molec-

ular bands. The radiative fluxes have been computed

using this 'pseudo-gray' formulation. The justification
for using this model is provided in [19].

The specific problem considered is the supersonic
flow of premixed hydrogen and air (stoichiometric
equivalence ratio _ = 1.0 ) in a channel with a com-

pression corner on the lower boun "dary (Fig. 2). The
physical dimensions considered for obtaining results

arc L = 2 cm., Xi = lcm., Xz = 2cm., Lx = Xt +

X2 = 3 cm. , and (, = 10 degrees. The Ih)w is ignited
by the shock from the compression corner. The inlet

conditions which are representative of scramjet oper-
ating conditions, are Poo = 1.0 aim., Too = 9(X) K

and Moe = 4.0. This same flow has been computed
by several CFD research groups 14, 18, 19, 211 as a
benchmark case.

Figures 3--6 show the computed results using a 31

x 31 grid, for temperature and pressure as well as H20

and OH species mass fractions, varying along x at the

location y = 0.02 cm from the lower wall (boundary
layer region). Figures 3 and 4 show the temperature

and pressure profiles predicted by the three chemistry

models. The temperatures in the boundary layer show

a gradual increase(Fig. 3). The pressure profiles are
plotted at y = 0.13 cm. (inviscid region) and show a

sharp increase due to the shock (Fig. 4). The ignition-

phase inaccuracies of the three chemistry models can
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be seen in Figs. 5 and 6. The shock is occurring after
x / Lx = 0.3. However, the 2-step model predicts

ignition before the shock (shorter ignition delay) due
to the high temperature in the boundary layer. On the

other hand, the 18--step model predicts a longer ignition

delay, at x / Lx = 0.37 (Fig. 5). The 35-step model's

prediction of ignition delay appears to be an average of
the other two models. Although the three models do not

differ much in prediction of temperature and pressure
profiles, they do differ significantly in predictions of

species productions (Figs. 5, 6).

In order to resolve this discrepancy, a grid sen-

sitivity study was carried out to examine whether the

grid size affects the flow predictions. The results of

thrce grid distributions 11 x 31 , 31 x 31 and 61 x
31 are shown in Fig. 7, and it appem_ thai the 31 x

31 grid is sufficient for the present study.

The reason for the varying predictions of species

production by the three models was further examined

and the results are shown in Figs. 8 and 9. Figure 8
shows that the Reaction No. 8 in Table ! is critical

in determining the extent of chemical heat release and

H20 production. Reaction No. 8 deals with produc-
tiou of il()2 radical. This reaction is absent from the

2-step model, while it is common to both the 18-step
and 35-step models. Figure 8 shows that the 35-step

mod_! experiences nearly a 30% drop in temperature
at the channel exit, when the rate of Reaction No. 8

is reduced by a factor of 1000 (effectively cutting off
the production of the HO2 radical). In contrast, the

18-step model shows a 15% drop in temperature, when
subjected to the same reduction in rate of Reaction No.
8. This shows that the Rcuction No. 8 controls the

overall H20 production occurring in Reaction No_.
9-18 (Table 1). Due to the high temperatures ( "3000

K) in the flowfield, there is a pool of highly reactive

free radicals like H , O, etc. The HO2 radical is

converted to the very reactive OH radical, by the free
radicals (Re.action Nos. i ! and 12). This eslablishes

the HO2 radical as a very impollant species in pro-

moting flame propagation in hydrogen-air flames. A
similar study has t)ecn carried out in 1301. Since the

2-step model does not have the HO2 radical, it pre-
dicts lesser amounts of OH and HzO.

It was necessary to determine the reason for the

higher sensitivity of the 35-step model to the HOz rad-

ical, as compared to the 18-step model. Figure 9 shows
that the Reaction Nos. 2 ! and 23 in Table I are critical

in determining the extent of chemical heat release and

1{20 production. Reaction Nos. 21 and 23 deal with
production of the NO radical. These reactions are

absent from the 2-step and 18---step models, whereas

they play an important role in the 35-step model. Fig-
ure 9 shows that the 35-step model undergoes a 30%

reduction in temperature, when the rates of Reaction
Nos. 21 and 23 are reduced by a facwr of I(XX) (el-

fectively cutting off the production of the NO radical).

This is nearly the same reduction caused by reducing
the rate of Reaction No. 8 by a factor of ! 000. Due

to the high temperature_ in the flowficid, the usually
inert nitrogen dissociates into the highly reactive N
free radical. This free radical N is then oxidized in

Reaction Nos. 21 and 23, thereby producing the NO
radical. This NO radical converts the HOz radical

into the highly reactive OH radical, through Reaction

No. 29. This confirms that the NO radical is a very

important species for flame propagation in a hydrogen-
fueled supersonic combustor. Since the 35-step model

has the NO radical, it predicts higher amounts of OH

and H20 than the 18-step model.

Based on the above understanding of the chemi-
cal kinetics of supersonic hydrogen-air flames, the ra-

diative interactions were examined. Figure 10 shows
the profiles of the normalized streamwise radiative flux

qe_ predicted by the three chemistry models, along
the location y = 0.02 era. from the lower wall. The

qttz flux reduces towards the end of the channel due

to cancellation of fluxes in positive and negative direc-

tions. It is seen from Fig. l0 that the 18-step and

35-step models predict signilicantly higher mnounts

(50% more and 100% more, respectively) of qtt_ than
the 2-stop model. This is because radiative heat tran-

fer is a strong function of temperature, pressure and
species concentrations. So the larger values of radiative

Iluxes arc caused by higher amounts of H20 concen-

trations, which in turn, depend on reactions involving

HOz and NO species.

Figure I I shows the variations of the normal ra-

diative flux qJtx along x , at the location y = 0.02 cm.

These do not appear to vary significantly between the
three chemistry models. However, in all three cases,

the ojq, value increases rapidly after the shock.

Figures 12-15 show the computed results for re-
acting flows with and without radiation, for the three

chemistry models, it is seen that the 2-step model
shows only slight effect of radiative interaction, as

compared to the 18-step and 35-step models. The
18-step and 35-step models predict lower tempera-
ture and lower H20 and OH concentrations after the

shock. This is because of the q_A flux, which reduces

the total energy. Comparison of results in Figs. 12-15

shows that the 35-step model exhibits stronger ell'cot
of radiative interactions, than the other two models.

For reacting flows without radiation, it was s_n

from Figs. 5 and 6 that the 18-step model had a longer
ignition delay (ignition at x / Lx = 0.37), while the

35-step model had a shorter ignition delay (ignition at

x / Lx = 0.27). Another effect of radiative interactions,

seen in Fig. 14, is to nullify this differencc in predic-

tions of ignition delay. For both 18-step and 35-step
IIIt)dcIs, will! radiation, tim ignition is sccn It) occur at



the.sata¢point,x / Lx = 0.33. No such effect is seen
on the ignition characteristics of the 2-step model.

Conclusions

The two-dimensional, spatially elliptic Navier-

Stokes equations have been used to obtain solutions

for supersonic flows undergoing finite-rate chemical

reactions along with radiative interactions. The spe-
cific problem considered is of the prcmixed flow in a

channel with a ten-degree compression ramp. The in-

let conditions used in the present study correspond W
typical flow conditions of a scram jet engine. Three

different chemistry models were used for parametric

studies, accounting for increasing number of reactions

and participating species. It is seen that the radiative in-
tcracrions vary significantly, depending particularly on
chemical reactions involving H02 and NO species.
These reactions have a substantial effect on the flow-

field, with regard to H20 concentration, temperature
and pressure. Also, it is observed that the difference

in the ignition delays of two chemistry models invov-
lug tl()_ reactions is nullilied as a result of radiative
interaction. The results "also show thai the streamwisc

radiative Iiux reduces the temperature and concentra-

tion of species. This effect is a strong function of the

amount of HzO species concentration.
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Table I. Hydzosen-AirCombnsUon Meclmnllm 122]

REACTION A(moles) N(cm] ) B(calories/gm-mole)

** following RacOons constilutc the 18-slep model **

(I) 02 + Hz _ OH + OH !.70 x 10t_ 0 48150

(2) 02 ÷ It *-*OII + O 1.42 X 1014 (_ 16400
(3) ill + Oii *-* H20 ÷ It 3.16 x l0 t 1.8 3030
(4) liz 4, O _ OH 4, H 2.07 %1014 0 13750
(5) Oil + Oil ÷* HzO + O 5.50 x IOt] 0 7000
(6) II 4, Oil 4, M ,,-* tlzO 4, M 2.21 x 102z --2.0 0
(7) I1 + H 4, M _-* Hz + M 6.53 x 10.7 --!.0 0
(8) II 4, O: + M ,-* 11(32+ M 3.20 x l0 t= --!.0 0
(9) O!1 + 1102 _ O_ + HIO 5.00 x 10It 0 1000
(10) il + HC_ ,-* Hz + 02 2.53 x 10t3 0 70(1
(11) It + HOI 4-_O|1 + OH !.99 x 10 t4 0 1800
(12) O 4, HOa ,4 C_ ÷ OI! 5.00 x 10t3 0 100()
(13) IIC_tll02 ,,--*02 ÷ 11102 1.99 x 10Rz 0 0
(14) IIz -, ilOz ,-t X ÷ ilzO] 3.01 x I0 tt 0 18700
(13) 011 ÷ llzO.'_ _ llzO 4, llO.] 1.02 x IOt] 0 1900
(16) II÷ llzO2t-,I120+ O11 5.0(Ix Ill t* 0 10(Xl)
(17) O ÷ llzO2 *-* O!! 4, li(_ 1.99 x I(1Is 0 590()
(18) IIzOa 4, M *-* OII + OII 4, M 1.21 x IOn 0 4550()

** Rmaintnll Raclions comptele the 3_$-step model **

(19) 02 4, M 4-*O+O+ M 2.75 x 10tt --I.0 118700
(20) Nz + M_-* N4. N+ M 3.70x 1021 --I.6 225000
(21) N +O_ _-*O+ NO 6.40x l0 t 1.0 6300
(22) N +NO_O4`N2 1,60x l0 t] 0 0
(23) N 4`Oil *-* H + NO 6.30 x l0 t! 0.5 0
(24) II ÷ NO + M *-* IINO + M 5.40 x 10is 0 =---600

(25) I1+ IINO_tHa÷NO 4.80x l0 t! 0 0
(26) O + ltNO *,-* OII + NO 5.00 x 10tt 0.5 0
(27) Oil + IINO _-, I!10 ÷ NO 3.60 x 10I) 0 0
(28) I1()] ÷ IINO ,, II:Oa + NO 21KI x IOn 0 0
(29) IIOz t- NO _-, OII + NO: 3.43 x I111z 0 --260
(3(I) il 4,NO] H Oii 4, NO 3.50 x 10t4 0 1500
(31) O 4,NO2 4-* O2 + NO 1.00 a 10tl 0 600
(32) NO: 4, M _ O 4, NO 4, M 1.16 x I016 0 66000
(33) M ÷ Oll 4, NO 4-* HNO_ 4, M $.60 x I0 ts 0 --1700
(34) M + OH + NOa ,,-* IIN('_ 4, M 3.00 x IOts 0 --3800
(35) OII + IINO-_ t-t IlaO + NO2 1.60 x lit t] 0 O

** followin s reactions conslJlme the global 2-step model [4. 16, 18, 19l **

(1") ila + Ol ,H, 2 OH
(2") 20!1 ÷Ha H, 2HaO

11.4 x I0_7 --IO.O 4865
2.50x I0M --13.0 42500
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Abstract

Analyses and numerical procedures are presented to investigate the radiative interactions

of absorbing-emitting species in chemically reacting supersonic flow in various ducts. Specific

attention is directed in investigating the radiative contributions of H20, OH, and NO under

realistic physical and flow conditions. The radiative interactions in reacting flows are investigated

by considering the supersonic flow of premixed hydrogen and air in a channel with a compression

corner at the lower boundary. The results indicate that radiation can have significant influence

on the flowfield and species production depending on the chemistry model employed.

Nomenclature

A

Ao

cj

e_

E

rj
h

k

band absorptance, m t

band width parameter, m 1

concentration of the jth species, kg-mole/m 3

Planck's function

total internal energy

mass fraction of jth species

static enthalpy, J/kg

thermal conductivity, J/m-s-k
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kb

kf

P

Pj

qR

qRa3

R

S

T

U,V

x,y

_p

A

/L

p

<7"

T

backward rate constant

forward rate constant

pressure, N/m 2

partial pressure of jth species

total radiative heat flux, j/m2-s

spectral radiative heat flux, j/m3-s

gas constant, J/kg-K

integrated band intensity, (N/m2) 1 m 2

temperature, K

velocity in x- and y-direction, m/s

production rate of jth species, kg/m3-s

physical coordinates

spectral absorption coefficient, m l

Planck mean absorption coefficient

second coefficient of viscosity, wave length, m

dynamic viscosity (laminar flow), kg/m-s

computational coordinates

density

Stefan-Boltzmann constant, erg/S-cm2-K 4

shear stress

equivalence ratio

wave number, m -1

Introduction

There is a renewed interest in investigating various aspects of radiative energy transfer in

participating mediums. Radiative interactions become important in many engineering problems

involving high temperature gases. Recent interest lies in the areas of design of high pressure

combustion chambers and high enthalpy nozzles, entry and reentry phenomena, hypersonic

propulsion, and defence oriented research.
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Basic formulations on radiative energy transfer in participating mediums are available in

standard references [1-5]. The review articles presented in [6-151 are useful in understanding

the radiative properties of participating species and the nature of nongray radiation. The validity

of radiative transfer analyses depends upon the accuracy with which absorption-emission and

scattering characteristics of participating species are modeled. There are several models available

to represent the absorption-emission characteristics of molecular species and these are reviewed

in [12, 13]. These models have been used to investigate radiative interactions in several duct

flows [16-29].

The purpose of this study is to investigate the effect of radiative heat transfer in chemically

reacting supersonic flow in various ducts under different physical and flow conditions. This pro-

vides essential information for investigating the effect of radiative interactions in the combustor

of a supersonic combustion ramjet (scramje0 engine. This hydrogen-fueled engine is proposed

for propelling transatmospheric hypersonic vehicles. Several basic codes have been developed

to compute the flowfield in a scramjet engine [21-241. The combustion of hydrogen and air

results in absorbing-emitting gases such as H20, OH, and NO. Specific attention, therefore, is

directed in investigating the radiative contributions of these gases under realistic conditions. In

essence, the present effort is a continuating of the earlier work conducted in this area of re-

search [25-27]. Extensive literature survey is provided in the cited references. A comparison of

different chemistry models used in investigating radiative interactions is presented in [28].

!

Basic Governing Equations

The physical problem considered to investigate the effect of radiative interactions in super-

sonic flow are two-dimensional laminar flow between two parallel plates (Fig. 1 a) and within a

circular tube (Fig. lb). Another geometry is considered to study the effect of shocks and chem-

ical reactions on the radiative heat transfer and this consists of a channel with a compression-

expansion ramp (Fig. lc). The governing equations and boundary conditions are provided here

for all physical problems considered in this study.



4

The physical problem considered for basic understanding of radiative interaction in super-

sonic flows is two-dimensional variable property laminar flow between two parallel plates. For

this model, two-dimensional Navier-Stokes equations in fully conservative form are used to

describe the flow field. These equations, in physical domain, can be written as [27,29]

OU aF aG

0--y+

where vectors U, F, G and H are written as

P

pu

U = pv

pE

.PfJ

pu

g .....

a

+ H = 0 (1)

pu2 +p+ rzz

puv + rz_

(pE + p)u + r_zu + "rzyv + qcx 4- qttz

pv

puv + ryz

pu 2 + p + "ryy

(pg + p)v + "r_v + "rzyu + qc¢ + ql_y

pv f j - pD_-_

n .__

0

0

0

0

-,bj
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The viscous stress terms appearing in the definitions of F and G are given in [27]. The relations

for conduction heat transfer in x and y directions are given by

-k°T = -k (2)
qCx = Oqx , qCy 0y

The terms qgx and qRy represent radiative fluxes in x and y directions, respectively; expressions

for these are provided in the next section. The total energy flux in a given direction is given by

the corresponding last term in the definitions of F or G. Consequently, this formulation involves

all kinds of energy interaction including frictional (aerodynamic) heating. The coefficient

of viscosity is evaluated by using the Suthefland's formula and the coefficient of thermal

conductivity is calculated by using a constant value of the Prandtl number. The total internal

energy E appearing in U, F, and G is given by

u2 nt" v2 m

g = P/p + _ + _ hifi (3)
i=l

Equation (1) can be used to obtain solutions for all kinds of compressible flows. However,

boundary conditions and numerical procedures for different flows are quite different. For

supersonic flows the inflow conditions are specified and outflow conditions are obtained by

extrapolation. The boundary conditions used along the surfaces are u=o, v=o, OP/Oy = o, and

T=Tw.

The governing equations and boundary conditions for the supersonic flow through a channel

with a compression-expansion ramp is essentially the same as for the parallel plate geometry.

However, a strong shock is produced at the compression corner and the flow becomes highly

reacting from the beginning of the xz-coordinate. (Fig. lc).

The basic governing equations for chemically reacting compressible flow through a circular

tube can be written as [29,301

OU OF 1+ Nx+ y = H/y (4)
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where x and y represent the sdeamwise and radial coordinates, respectively. In Fig. lb, the

radial coordinate is denoted by r. Thus, both r and y notations are used to represent the radial

coordinate for the circular geometry. The definitions of vectors U, F, and G in Eq. (4) are same

as given in Eq. (1) and vector H is expressed as

H=[0 0 p+r0e 0 y _,j] (5)

For the circular tube geometry, the viscous terms appearing in Eq. (1) arc given by

(6a)

(on ov-2f, (6b)

(6c)

_oo= \ox + _ + - 2t'yv (6d)

The boundary conditions for the circular tube geometry are similar to the parallel plate geometry.

Radiative Transfer Models

Evaluation of the energy equation presented in Eqs. (1) and (4) requires an appropriate

expression for the net radiative flux in each direction. A suitable radiative transport model is

needed to represent the true nature of participating species and transfer processes. In this section,

a brief discussion of various absorption models is given and essential equations for the radiative

flux are presented.
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Absorption Models

Several models are available in the literature to represent the absorption-emission character-

istics of molecular species. The total band absorptance of a vibration-rotation band is given by

A = [1 -exp_X)d(_-_o)] (7)

where _w is the volumetric absorption coefficient, _ is the wave number, _oo is the wave number

at the band center, X - Py is the pressure path length, and the limits of integration are over the

entire band pass. Various models are used to obtain the relation for A in Eq. (7).

The gray gas model is probably the simplest model to employ in radiative transfer analyses.

In this model, the absorption coefficients is assumed to be independent of frequency, i. e., _

is not a function of _o. A convenient model to represent the average absorption coefficient of a

gray gas is the Planck mean absorption coefficient _p which is defined as [11

_, = k,,, e_CT)dw/eb(T) (8a)

For a multiband gaseous system, this is expressed as

n

_p = [Pj/(o-T4)] Zew,(T)Si(W) (8b)

i

where Pj is the partial pressure of jill species in a gaseous mixture, ewi(T) is the Planck function

evaluated at the ith band center, and Si(T) is the integrated band intensity of the ith band.

As defined in Eq. (8), Xp is a property of the medium. When ap is evaluated at the

temperature of the gas, it is actually a mean emission coefficient and it becomes equal to the

actual mean absorption coefficient only for the conditions of equilibrium radiation field. For a

nonuniform temperature field, the mean absorption coefficient used for the optically thin radiation

is the modified Planck mean absorption coefficient which for black bounding surfaces is defined

as [1,9]

_m(T Tw) = [ fo_ _,_(T)eb_(Tw)&,.,] /eb(T_, ) (9a)
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Note that nrn is a funcdon of both the gas temperature and the wall temperature. An approximate

relation between _p and _m is available for infrared radiation as [I]

'¢m(T, T,,,) = ap(T,,,)(Tw/T) (9b)

This expression is usually employed in gray gas radiative energy transfer analyses.

Several other models for the mean absorption coefficient are available in the literature [1,31].

Since these models account for detailed spectral information of molecular bands, this approach of

radiative formulation is referred to as the "pseudo-gray formulation." The gray gas formulation

for radiative transport is very useful in parametric studies.

There are several nongray models available in the literature to represent the absorption-

emission characteristics of vibration-rotation bands. These are classified generally in four classes,

(1) line-by-line (LBL) models, (2) narrow band models, (3) wide band models, and (4) band

model correlations. A complete discussion on usefulness and application of these models is

provided in [12, 13]. For many engineering applications, wide band model correlations provide

quite accurate results. The most commonly used wide band model correlations are due to

Edwards [5, 111 and Tien and Lowder [9]. The Tien and Lowder correlation for the total band

absorptance is a continuous correlation and is given by the relation

_,(u,/_)=A(u, _)/Ao = ln{uf(t)[(u+ 2)/(u + 2f(t))]+ l} (10)

where

f(t) = 2.9411 - exp(-2.Ci0t)], t = _/2

and u = SX/Ao is the nondimensional path length, fl = 2rT/d is the line structure parameter, 7

is the line half width, S is the integrated band intensity, and Ao is the band width parameter.

Equation (10) provides accurate results for pressures higher than 0.5 atmosphere [12, 13].

Spectral properties and correlation quantifies for various radiation participating species are

available in [5, 9, 11]. These are useful in gray as well as nongray radiative formulations.
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Radiative Flux Equations

For many engineering and astrophysical applications, the radiative transfer equations are

formuhlted assuming one-dimensional planar systems. For diffuse nonreflecting boundaries and

in absence of scattering, the expression for the spectral radiative flux in the normal direction

is given by [1, 19]

where

qRw(Y) = el_o -- e2w

3 Y

+ :fo

:] j[yL2

3

F%,(z)_w exp [-_n_,(z- y)] clz (11)

= e,o(z)- el.,, -- e2(z)- e2,o

It should be pointed out that the exponential kernel approximation has been used in obtaining

Eq. (11). The total radiative flux in a given direction is expressed as

/5qn -- qn_ dw (12)

A combination of Eqs. (11) and (12) provides a proper form of total radiative flux equation

for obtaining nongray solutions of molecular species. Any convenient absorption model can be

used to obtain nongray results.

For a gray medium, Eq. (11) reduces to a simpler form and upon differentiating the resulting

equation twice, the integrals _u'e eliminated and there is obtained a nonhomogeneous ordinary

differential equation as 11, 16, 271

1 d2qrt(y) 9
4 qlt(y) _ 3 de(y)

n 2 dy z t,: ely
(13)

where n=_t,. Equation (13) is a second order differential equation and, therefore, requires two

boundary conditions. For nonblack diffuse surfaces, these are given as

_--1 2 [qR(Y)]y=n 3n L dy jy=.
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(1 _) lr_1 0 _14b,_2 [qR(Y)]y=L -- _[ dy Jy=L

Equation (13) along with boundary conditions can be used to obtain the energy equation for

gray gas radiative interaction. For black walls and TI = T2, the boundary conditions for Eq.

(13) become

qR(1/2) = 0, _qR(0) = (dqa/d()___ 0 , ro = xL,( = y/L (15)

For a black circular tube, the spectral radiative heat flux in the radial direction is given by

the expression [17]

>]= - F_o(r,)Xwaex p (r- r I dr I
71"Jo in 3' COS _'

fro. , >]- F.,(r) xwaexp (r'-r dr
cos 7

s [,- r' 1/+ F_(r') _oaexI) ---(r + - 2r sin 7)dr' d_'
sill 3' COS "/

where F_(f)=ew(r') - ew(Tw) and constants a and b have values of unity and 5/4, respectively.

(16)

A combination of Eqs. (12) and (16) provides a convenient form of the total radiative flux for

nongray analyses.

For a gray medium, the expression for the total radiative flux can be obtained from differential

approximation as [1, 17]

_rrd[!d(rqR)] -__qR"• =3a_ c-_-rdT4

For a black tube, the boundary conditions for Eq. (16) are found to be

ro (_qR) , qlt(0) =0 , % =tCro,_ r/to

Equation (17) is used along with Eq.

(17)

(18)

(18) for general one-dimensional gray gas formulation

and analyses.

With certain modifications, the radiative flux equations presented in this section can also

be used to investigate the radiative interactions in the flow direction. The procedure for doing

this is provided in [27].



Chemistry and Thermodynamic Models

11

Chemical reaction rate expressions are usually determined by summing the contributions

from each relevant reaction route (or path) to obtain the total rate of change of each species.

Each path is governed by a law of mass action expression in which the rate constants can he

determined from a temperature dependent Arrehenius expression. The reaction mechanism is

expressed in a general form as

115 I13

7ijCjl -_ _ 7ijCj," i = 1, nr (19)
kbi

j=l j=l

where ns= number of species and nr= number of reactions. The chemistry source terms in Eqs.

(1) and (4) are obtained, on a mass basis, by multiplying the molar changes and corresponding

molecular weight as

[
i=1

11'18 718

_[t. ttIIc,,:- -k,, II
m=l m=l

(20)

The reaction constants k f, and kb, appearing in Eqs. (19) and (20) are determined from an

Arrhenius rate equation given by

where

kfi = Ai T Ni exp -_-_ (21)

( 1 ) AN (--AGRi_kbi =kfi/keqi, keqi = _ exp _-_ ]

The coefficients A, N, and E appearing in Eq. (21) are given in Table 1 and the Gibbs energy

term AGRi is calculated as

ns n8

" _ j = 1, (22)AGR_ = __ 7ijgi -- _ 7ijgi , nr
j=l j=l

where

gJ = Aj(T - In T) + -2-BJT2 +-6-CJ T3

Dj T4 Ej T5
_-_ + _ + Fj + GjT



as

12

The gas constant for the mixture is evaluated by a mass-weighted summation over all species

R = Z fjRj (23)

j=l

The equation of state for the mixture is written as

P = p 1_ T (24)

Method of Solution

The governing equations are transformed from the physical domain (x, y) to a computational

domain (_, 7#) using an algebraic grid generation technique similar to the one used by Smith and

Weigel [32]. The grid spacing is kept uniform in the flow direction and compressed near the

(1) and (4), are expressedboundaries in the normal direction. The governing equations, Eqs.

respectively in the computational domain as

(25)

-b-?
(26)

0=U J, F'=Fy, I-Gx, I,(_=Gx_-Fy_,

[_{=HJ, J=x_y,l-y_x,1

The temporal descretization procedure for Eqs. (25) and (26) in given in [25-27]. Once

this has been performed, the resulting system is spatially differenced using the explicit unsplit

MacCormack predictor-corrector scheme [33]. This results in a spatially and temporally discrete,

simultaneous system of equations at each grid point [34,35]. Each simultaneous system is solved

using the Householder technique [36,37], and is marched in time until convergence is achieved.

where t
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The details of gray as well as nongray radiative flux formulations and solution procedure

are available in [19,27]. For the gray gas model, the governing equations are discretized using

a central difference scheme. The descretization of Eqs. (13) and (17) results, respectively, in

qj-I -- + + _-t,:j'jqj + qj+E = RIIS (28)

where

+---4 + . , - qi-I- qj-I = i/ttS (29)
y- 2yjCj 2yjAyj • A 2yj Ayj

. xj:  yf(L Bj= Ayj(1+ l j), % = Z/ yj ,

R[IS --" 1.Sh;j [ ej+l --ej ej -- ej_ I Yj+I -- Yj
[ flj,A, yj + , z_yj = yj -- Yi-l, /_j -- YJ Yj-1Ayj

Equations (27) and (28) along with boundary conditions given by Eqs. (15) and (18) form

tridiagonal systems of equations which can be solved efficiently by the Thomas algorithm.

In the nongray gas formulation, the divergence of the radiative flux is evaluated using a

central differencing scheme and is treated as radiative source term in the energy equation. Since

the radiative flux terms involves integral formulation, unlike other flux terms which are only it[

a differential form, it is uncoupled and treated separately.

Physical Conditions and Data Source

The physical conditions for which specific tlowfield analyses and computations are needed

are discussed in [21-281. In this work selected parametric studies have been conducted for

certain flow and physical conditions. Radiation participating species considered are H20, OH,

and NO. Radiative properties of these species are available in [5, 9, 11-131. Different amounts

of these gases, in combination with air, are considered for parametric studies. Essential data for

the chemistry model employed are obtained from Refs. 38--40 and these are provided in Table l.
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For basic studies, the physical dimensions considered for the channel are L=3 cm and Lx=10

cm, and for the circular tube they are L=D-3 cm and Lx= 10 cm. Certain results, however,

were obtained also for other dimensions.

Results and Discussion

Based on the theory and computational procedure described in the previous sections, an

existing computer code was modified to solve the two-dimensional Navier-Stokes equations

for radiating supersonic laminar flows between two parallel black plates. A similar code was

developed for radiating supersonic flows in a circular tube. In most cases, the radiative interaction

was considered only in the normal direction. Extensive results have been obtained for pure H20,

OH, and NO as homogeneous participating species, and for different mixtures of these species

with air. Selected results axe presented and discussed in this section.

For the parallel plate geometry (3 cmx 10 cm), a comparison of the divergence of radiative

flux for general (nongray), gray, and their optically thin limit models is presented in Fig. 2 for

two different y-locations (y=0.2 and 1.5 cm). The inflow conditions for this case are P_ = 1 atm,

T_ = 1,700 K, Moo = 4.3, fH2o = 0.5, fo_ = 0.1, and fN_ - 0.4. The gray formulation is based

on the modified Planck mean absorption coefficient which accounts for the detailed information

on different molecular bands. The range of optical thickness calculated in [27] was found to

be between 0.0003 and 0.4. Thus, for the physical model and inflow conditions considered,

the radiative interaction is essentially in the optically thin range. No significant difference in

results is observed for the two y-locations. This is a typical characteristic of the optically thin

radiation [1,10]. The solution of the gray formulation requires about ten times less computational

resources in comparison to the solution of the nongray formulation [27].

As mentioned earlier, the Pianck mean absorption coefficient sp (or Xm) is considered to

be an optically thin radiation absorption coefficient, although it has been used in other optical

ranges as well [1,9]. The appropriate absorption coefficient for the optically thick radiation is the

Rosseland mean absorption coefficient _R. It has been pointed out in [1] that if the medium is
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gray then_R=_e=_;otherwisetZp>tCR. Thus, use of _p (or _m) in pseudo-gray gas formulation

will provide maximum influence of radiative interaction. The _p values for H20, OH, and NO

have been calculated from Eq. (8b) by employing radiative properties available in [5, 9, 11]

and these are illustrated in Fig. (3). Figure 3a shows the results of l(X)% homogeneous species

whereas results in Fig. 3b are for different mixtures. The results provide indication of radiative

ability of different species at a given temperature. Values of _p for other species are available

in [1, 9].

The results of supersonic entrance region flow between parallel plates are presented in Figs.

4-10 for different physical and inflow conditions. As mentioned earlier, the basic physical

dimensions considered for the channel are L=3 cm and Lx=10 cm. In most cases, the inflow

conditions considered are Poo=l atm, Too=l,700 K, Lioo=2574 m/s (M_=3.0) with varying

amounts of radiation participating species in combination with air. Certain variations in physical

and inflow conditions are also considered for parametric studies. The chemical reactions are

not considered in obtaining the results of Figs. 4-10, and radiative flux results are presented

only for the normal direction.

Results for radiative flux are illustrated in Figs. 4 and 51as a function of the nondimensional

y-coordinate. For P=I arm, the results presented in Fig. 4 for different water vapor concentrations

indicate that the radiative interaction increases slowly with an increase in the amount of the gas.

The results for 50% H20 are presented in Fig. 5 for two different pressures (P_=l and 3 arm)

and x-locations (x=5 and 10 cm). It is noted that the increase in pressure has dramatic effects

on the radiative interaction.

For a mixture of 50% H20 in air, the conduction and radiation heat transfer results are

compared in Fig. 6 for Poo=3 atm and for two different x-locations (x=5 and 10 cm). The results

demonstrate that the conduction heat transfer is restricted to the region near the boundaries and

does not change significantly from one x-location to another. The radiative interaction, however,

is seen to be important everywhere in the channel, and this can have a significant influence on

the entire flowfield.
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Comparativeresultsfor 100% homogeneous species of H20, NO and OH are illustrated in

Fig. 7 at the exit plane (x=10 cm). As would be expected, the radiative contribution of H20 (with

five bands) is significantly higher than NO and OH. Only the fundamental bands of NO and OH

are considered in this study, and it is noted that NO is a better radiating gas in comparison to OH.

For a mixture of 25% H20 in air, radiative flux for two different plate spacings (L=3 and

6 cm) are illustrated in Fig. 8 for two x-locations (x=5 and 10 cm). The rate of radiative

transfer is a strong function of the amount of the participating species and the pressure path

length, PL. consequently, the results for the larger plate spacing indicate significantly higher

radiative interactions.

The effect of increased Mach number on the radiative transfer is illustrated in Fig. 9 for

pure H20 and for a mixture of 50% H20 in air. The results shown are for the exit plane (x=10

cm). At higher Mach number, the boundary layer is relatively thinner and the temperature in the

boundary layer is significantly higher. This, in turn, results in higher rate of radiative transfer.

For a mixture of 50% H20 in air, comparative results for the parallel plate channel and the

circular tube are presented in Fig. 10 for two x-locations (x=5 and 10 cm). The results for the

circular tube in general, exhibit the same trend as for the parallel plate geometry. Since the

circular geometry provides additional degrees of freedom for radiative interactions [17], the rate

of radiative transfer is higher for the tube.

The influence of radiative interactions in chemically reacting supersonic internal flows

was investigated by considering the physical model shown in Fig. lc. The specific problem

considered is the supersonic flow of premixed hydrogen and air in a channel with a compression

corner on the lower boundary. The physical dimensions considered for obtaining results are

L=2 cm, xt = 1 cm, xz=2 era, Lx=xl+x2=3 cm, and a=10 °. The inlet conditions, which are

representative of the scramjet operating condition, are P=I atm, T=900 K and M=4.0. The

flow is ignited by the shock from the compression comer. The flowfield for this problem has

been investigated by several researchers [21-28] where different chemistry models have been
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used.Influenceof radiative interactions was investigated in [25-27] by considering a simple two-

step chemistry model. Recently [28], a comparative study of the flowfield was conducted by

employing three chemistry models (see Table 1). It was found that signifcant amount of radiation

participating species are produced by the 35-step chemistry model. The results presented in Figs.

3-10 provided essential information on radiative behavior of these species. Complete discussions

on use of the three chemistry models with and without radiation are provided in [28]. Selected

results are presented here to demonstrate the influence of radiative interactions.

The computed results for the 35-step chemistry model are presented in Figs. 11-14 with and

without radiative interactions. The results were obtained by using a 31x31 grid; this was found

to be an appropriate grid for the model. The variations in temperature, pressure, and species

concentrations along the x-coordinate are shown for a y-location of 0.02 cm from the lower wall.

The shock occurs at about x/l.,x=l/3, and it is noted that the 35-step chemistry model predicts

the ignition time accurately. The temperature is seen to increase uniformly along the channel

(Fig. 1..1) and there is a significant increase in pressure after the shock (Fig. 12). Results of

Figs. 13 and 14 show that significant amounts of radiation participating species H20 and OH are

produced after the shock. The effect of radiative interaction is to lower the amount of species

production due to radiative transfer in the x-direction.

The results of radiative transfer by the three chemistry models are compared in Figs. 15 and

16 at y=0.02 cm. The results for the normal radiative flux presented in Fig. 15 demonstrate that

radiative interactions increase rapidly after the shock. The three models are seen to predict the

same general trend. The results of streamwise radiative flux illustrated in Fig. 16 show that the

net qRx decreases towards the end of the channel. This is due to cancellation of fluxes in the

positive and negative x-directions. It is noted that the net radiative transfer is in the negative

x-direction. The 18-step and 35-step models are seen to predict significantly higher qRX than

the 2-step model. This is because radiative heat transfer is a strong function of temperature,

pressure and species concentration which are higher (in the positive x-direction) for the 18-step

and 35-step models than the 2-step model.
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Conclusions

Two-dimensional compressible Navier-Stokes equations have been used to investigate the

influence of radiative energy transfer on the entrance region flow under supersonic flow condi-

tions. Computational procedures have been developed to incorporate gray as well as nongray

formulations for radiative flux in the general governing equations. Specific results have been

obtained for different amounts of H20, OH and NO in combination with air. Results demon-

strate that the radiative interaction increases with an increase in pressure, temperature and the

amount of participating species. This can have a significant influence on the overall energy

transfer in the system. Most energy, however, is transferred by convection in the flow direction.

The radiative interactions in reacting flows have been investigated by considering the supersonic

flow of premixed hydrogen and air in a channel with a compression comer at the lower bound-

ary. Depending upon the chemistry model employed, the radiative interaction is seen to change

significantly the temperature, pressure and species concentration in the flow direction.
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expansion ramp.

-divq Ry I05

.-- Optically thin (gray)--- k -T

107 G__ __.-,

106 _)

T_ = 1700 K
10 4 M= =4.3

_y = 0.2 em
.... y = 1.5 cm

10

0 .02 .04 .06 .08 .10
X,m

Fig. 2 Divorience of radive flux alomG tlm ¢lumnel for Ipmy
and nensmy models, M.. • 4_.

2.00 { *",

_I ,oo

0.00 ......... , ......... , ................... , .........
0.00 I000.00 2000.00 3000.00 4000.00 5000.00

Temll_rstu_

3b Vad=tlm of tlm Plmnek-m*m *d_wl_ion ¢oemci_t for
d=ll_b_mt miztm_ o¢ HmO, NO, and OH.

22



80000.00 r

i--4..,o

4"0000 O0 _--_

T

P. = 1 Ittm i

1'. = 1700K
U. =2574111/I I
M..-3

/..O ,xlOs
I

3.2-

2./.

1.6

;' 0.8
, o

W --0.8

--1,6

-8oooo.oo --2,/.

z= lO,'m

--3.2

-120000.00 I ......... _ ......... _ ......... _......... _ ......... --L.O
0.00 0.20 0.¢0 0.60 0.80 _ O0 0

Y/L

Fig. 6
4 Rsd_tive flux v,. y st the chuml _ M. = 3,0.

I i i.

-- qc'_'

--- qRT

X = 10 ¢m_.J _/

I i { I I

P. = 3 =tin

T.= 1700 K

U.: 257_. m/s

H_0 = 50%

0.2 O.L 0.6 0.8 1.0

Y/L

Radiative and conductive fluxes vs. y for P =.,3 atm, x = 5
and 10 _a, 50_ H20, M.. =3.0.

150000.00

_. x=Scm T. = I"/00K
U. = 2574 m/s

; 00000.00 -_ -_ ........ M_=3
•., -..

-! 50000.00 _

-200000.00 - ,:, , ........... : ....... _,,
0.00 0.20 0.4.0 0.60

Y/L

5000000

000

#
-50000.00

-:0000000

Fill. 5

0.80 ; OC

Radiative flux vs. y for P = I and 3 mtm, • • 5 and I0 cm,
50_ HtO, M. =3.0.

800C0.00

: _, H_0 T. = 1700K
U. = 2574 m/s

4.00¢0 ,_C ::_---"__ M_ =3

o
I,,.

#

- 4,-0000,00 * =

_ 100% Homogeneous Species _"_i

-80000.00 -: L

i

--120000.00 ....... m, ....... - ......... I.................... '

0.00 0.20 0.40 0.60 O.SO _ 00

'i'lL

FfI.1' Radiative Nux vs. y for H_O, NO, and HO. P = I atm,
M. =3.0.

Z3 ORIGINAL PAGE IS

OF POOR QUALITY



80000.00 . 60000.00 ,

" _ x-10m P..1Mm _ _ x=iO-,- P. =latin

. T. = I?0E : = T. = 1700K
60000.00 --_ _ ......... x 5_ U.._74m/s "._ ........ z 6era U. =2574m/e

". % M..a _000_.00 _\ N..3

"\ " L=Tmm HSO=_

\. " _ 20003.00

\', -23000.90

-_O00C.OC Tube

: t _t.OOOC.OC

-6000000 -

-SOGOG OC -_

000

Fig. 8

C.:m.... o.,,o c..6c
V,m

Radiative flu* vs. y for two difl'mmnt pists spse/np (L = 3
and 6 cm) jt * = 5 and I0 era, M.. = 3.0.

60q_ HlO ÷ _ Air

-5300C.00 , ............
3.33 C.20 0.40 0.60 3.80 :3C'

Y/l,

I_ 10 Radiative flux vs. y for chsnnel and tube (g = D - 3 an)
mt z = 6 8nd I0 cm, S0_ HIO, M.. =3.0.

et

. .mF,_r.-, -_

._CO; 2 '20

0.00

- 5GOCO '30

-I00000.00 _,
0.00

_-\ M. = 4.5 P. =INto
T. = rT'00K

z,, 10am
\

3 \ ,

%- ..

-.. --..
" .......... I00_H_O \ ,," ,,

I \ ""

- !
\!

i i , _ i i I ......... i [ I , , ..... i , l ] T 1 I ; I : _ q t ....... i

0.20 0.40 r].60 0.80 _.O0

Y/L

P'il. 9 Rsdist/vs flux VL y for 50_ sml 100'J$ HZO, z = 10 era,
M. = 3.0 md 4.6.

" 35-_p- u.,_c':l_m,"..Y • •

| : oo.

|
1500"

1000'

_00

a = I0" P- = I arm

y= O.02cm T. =900K
M.,=4

0.2 0.4 0.6 0.8 1.0
Xl_

Temperatuns variat/on with • for resct/ng, and react/ng
and rmiiat/ng flows.

_4

ORIGINAL PAGE IS

OF POOR QUALITY



4

.m
P

_t

1

-- 35_step._--_.

• 35-step-mcn_Tr

or= II_ [ "6 - '

P. =latin
'r_ = _OK
M.-4

0

0.0 0.2 0.4 X / Lx 0.6 0.8 1.0

Fig. 12 Pressure variation with x forreacting,and reacting and
radiating flows.

35.stcp._ a

• 35-stcp-mcrn_ oe._

ct= I0_

y=O.02cm ,, •* ** ** *

& 8

a a a a

• " K

..y
0.2 0.4 0.6 0.8 1.0

X/Lx

Variation of OH mass fraction with x for reacting, and
reacting and radiating flows.

0.08"

0.06'

0.04

0.02

0._
0.0

Fig. 14

0.25"

=" 0.10"

0.05"

&a6 a6

_p IIIAL'I'I}_& ••

i ..."]+/

y= 0.02_

P. =latin
T. =900K
M..=4

0.0 0.2 0.4 0.6 0.8
XI_

1.0

Pill. 13 Variat/on of H_O mass fraction with x for nmct/ng, and
ructinll and radiating flows.

25
L



_sn

mm

3O0

20O

Fig. 15

2-s_'p model

1g-step model

35-step model

a= I0 °

y= 0.02 cm

P.. =latin
T. =900K
M_=4

Vsriation of normal rsdiat/ve flux with x for three
chemistry models.

mm

X

m
_m

2

2-step model

--" 18-step model

35-step model

P. =latin _=I0O

T. =900K y= 0.02era
IVI. =4

0
00

Fig. 18

0.2 0.4 0.6 0.8 i.0

X/Lx

Variat/on oFstresrn1,_se radiative flux with x for three
chemistry models.

2(i










